
Access Control Policy: A Framework to Enforce
Recommendations

Nada Essaouini , Anas Abou El Kalam , Abdellah Ait Ouahman

Cadi Ayyad University, ENSA of Marrakesh – OSCARS Laboratory
Avenue Abdelkarim Khattabi, Guéliz Marrakech, Maroc

Abstract— Access control policies are generally modelled using
permission, prohibition, and obligation rules. However, this does
not cover all possible scenarios as several applications have
recommendation rules. In this paper, we provide a formal
framework to express and to enforce recommendations. More
precisely, our framework allows to express recommendation
rules that become requirements over time. Furthermore, we give
the specification of the policy controller behavior in charge of
evaluating such a policy. Basically, in our formalization, a
recommendation is asso ciated with three conditions. The first
one triggers the recommendation: when this condition is true, a
notification is sent to the user to carry out an action satisfying
the recommendation. The second condition is the recall deadline
that determines when the next notification will be sent if the user
has not perform the access satifying the recommendation. The
third condition determines when a recommendation could
become a requirement.

Keywords— Information systems security, access control policy,
temporary logic of actions

I. INTRODUCTION

As organizations depend on their information systems (IS)
and as theses IS are more and more vulnerable and open to the
internet, security has become essential and unavoidable.

Insecurity has in fact been proved costly in case of
incidents, malfunctions or failure.

To overcome such incurred risks, in a specific
organizational context, we generally identify what needs to be
protected, quantify the corresponding issue, formulate security
goals and identify, arbitrate and implement adapted parades at
the right maintained level. This goes primarily through the
formulation and implementation of the security policy within
an organization.

Basically, a security policy is developed in three areas:
physical, administrative and logical. The first specifies the
physical aspects and environments of the system to protect.
(e.g., procedures and mechanisms taken to overcome thefts
and physical disasters). The second describes the
organizational procedures (e.g., separation of duties). The
third refers to the logical access control, which is based on a
triple service of identification, authentication and
authorization. In fact, before using the system, any user must

identify himself (identification) and prove its identity
(authentication). Once the relationship is established,
legitimate actions that the user can do are determined by
authorization policy (also known as access control policy).

Basically, this policy specifies who ha access to what, when
and in which condition? It of course must be consistent and
must comply with laws and regulations.

In general, the rules of security policy are specified in terms
of permissions (e.g., every attending physician has the right to
access medical records of his patients) and prohibitions (e.g.,
physicians do not have the right to delete diagnosis already
established), but also in terms of obligations (e.g., physicians
are obliged to keep medical records for the period determined
by law). However, in most information systems, we find
guidance and rules in the form of recommendations as in the
General Security Referential [1]. This document and its
annexes have been drafted jointly by the National Security
Information Systems Agency of France and the General
Headquarters for the Modernization of the State of France in a
legal framework. It defines a set of safety rules imposed on
the administrative authorities in securing their information
systems and also provides a good practice in the security of
information systems that administrative authorities should
apply. These good practices are typically formulated as
recommendations. Let us take the example of the document
entitled: “rules and recommendations regarding the selection
and design of cryptographic mechanisms” [2] (that
supplements the annex of the general security referential). In
this document, obligations are preceded by the word “Rule”
(e.g., RuleAuthenticityVerification stipulates that before using
a key in an application system, its authenticity must be
verified by a safety mechanism according to the repository) ;
while recommendations are preceded by the word “Recom”
(e.g., RecomEndUtilisationReason stipulates that it is
recommended that a key management architecture handles
different causes of end of life of a key separately). Actually,
recommendations are present is most of international and
European regulation such as the recommendations of the UN
General Assembly [3], recommendations of Europe Council
[4] [5], directives of the European Parliament [6], etc.
Similarly, in the field of critical infrastructure, organizations
such as the European Council [7],

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2452

International Governance Risk Council(IGRC) [8], North-
American Electric Reliability Council(NERC), etc. specify a
number of recommendations to protect infrastructures (e.g.,
electric network) [9].

These rules of recommendations should be considered as a
healthy approach against potential weaknesses, but in no case
they are mandatory. Besides that, in addition to theses
“classical recommendations”, we distinguish another kind of
recommendations that - under a condition of time - become an
obligation. Basically, this kind of reformulated
recommendation rules is not imposed by the security policy in
the current time, despite its utility to improve system security,
because their application at the time of completion of the
document may be binding or costly. These rules could actually
be considered as a sort of bridge between the security level
selected in the current time and the target one at a given time.
As examples of this kind of rules extracted from [2] we can
cite:

RuleSymKey-1. The minimum size of symmetric keys used
until 2020 is 100 bits.

RuleSymKey-2. The minimum size of symmetric keys to be
used beyond 2020 is 128 bits.

RecomSymKey-1. The recommended minimum size of
symmetric keys is 128 bits.

It is clear that the obligation to use a symmetric key
minimum size of 128 bits in 2020 (RuleSymKey-2) is actually
a recommendation in the current time (RecomSymKey-1).

In this work, we define a formal framework to express

“classical” recommendation policies and we specify a policy
controller in charge of evaluating such policies. Furthermore,
we introduce the notion of recommendation becoming an
obligation over time. To achieve our goals, we base our
analysis on the Temporary Logic of Actions (TLA) [10].

This paper is organized as follows. A brief introduction of
TLA is given in the next section. We give in Section 3, an
overview of the core language defined in [11] to express
access control, usage control and obligation policies, and to
specify the policy controller behavior in charge of evaluating
such policies. In Section 4, we extend this model to express
recommendation rules in an access control policy. Moreover,
we extend the specification of the controller in charge of
evaluating such a policy proposed in [11]. In Section 5, we
introduce the concept of recommendation that is transformed
into obligation and we extend the specification of the
controller policy. Section 6 describes the behavior of the
controller security policy to reflect the updated security
policy. In Section 7 and 8, we describe related works we draw
up conclusions .

II. INTRODUCTION TO TLA

As our formal framework will be based on the Temporal
Logic of Actions (TLA), we briefly present it in this section.
TLA was introduced by Leslie Lamport in 1991, inspired from
[10] and [12]. TLA is our formal framework.

Let Var be a countable infinite set of variables. The value
of each variable will be interpreted as an element of Val, set of
values.

A state is an assignment of values to variables that is, a
mapping from the set Var of variable names to the collection
Val of values. Thus, a state s assigns a value s(x) to a variable
x. The collection of all possible states is denoted St. We write

s⟦x⟦ to denote s(x). Hence, we consider ⟦x⟦⟦of the
variable x as a mapping from states to values.

Besides, a trace is defined as an infinite sequence of states.
We denote hσ0 , σ1 , σ2 ,...i sequence of states σ0 , σ1 ,...

A predicate (or a state predicate) is a boolean expression
built from variables and constant symbols. The meaning

⟦P⟦⟦of a predicate P is a mapping from states to booleans,

so for every state s, s⟦P⟦ is equal to true or false. We say

that s satisfies P if and only if s⟦P⟦ equals true .

An action is a boolean valued expression formed from
variables, primed variables, and constant symbols. A predicate
is actually a special case of action. An action represents a
relation between old states and new states, where the
unprimed variables refer to the old state and primed variables

refer to the new state. Formally, the meaning ⟦A⟦ of an
action A is a relation between two states, a function that

assigns a boolean s⟦A⟦t to a pair of states (s, t). We define

s⟦A⟦t by considering s to be the “old state” and t the “new

state”, so s⟦A⟦t⟦is obtained from A by replacing each

unprimed variable v by s⟦v⟦⟦and each primed variable v'

by t⟦v⟦:

 s⟦A⟦t , A(� ‘v’: s⟦v⟦ /v, t ⟦v⟦⟦/v')
A temporal formula is built from elementary formulas

using boolean operator and the unary operator ¤, read always.

Other new operators can be defined : ♦F , ¬ ¤¬F

The basic TLA formulas are predicates and formulas of the

form: ¤⟦A⟦f , where ⟦A⟦f , A � (f' = f)
Stuttering is a series of states where some variables retain

the same value.
For a series of states hs0 , s1 , s2 ,...,sn i , for A, B actions,

TLA defines the following modalities:

 hs0 , s1,..., sni ⟦A⟦ , s0 ⟦A⟦ s1

Next °A hs0 , s1,..., sni

⟦°A

⟦

, s1⟦A⟦s2

Always ¤A hs0 , s1..., sn i
⟦¤A⟦

, �i � [0..n] si⟦A⟦si+1

Eventually ♦A hs0 , s1..., sn i
⟦♦A⟦

, �i � [0..n] si⟦A⟦si+1

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2453

Using the first-order logic, a TLA formula is defined by the
following grammar:

Formula F ::= A | ¬F | °F | ¤F | ♦F | F�F | F � F | F→

A system, a program or an algorithm are specified by
giving all the allowed behaviors of the system. By expressing
the specification as a TLA formula, a system is specified by
the formula corresponding to allowed behaviors.

III. A FRAMEWORK TO ENFORCE ACCESS CONTROL, USAGE

CONTROL AND OBLIGATION

An Information System (IS) is an organized set of resources

(hardware, software, personnel, data and procedures)
allowing to regroup, classify, process and make information
accessible in a given environment. Three main elements of the
IS are important in our context: the user, an active entity that
interacts with the IS; the policy controller in charge of
evaluating the user's requests according to the access control
policy (to prevent unauthorized access to a resource of SI);
and finally, the executive manager of the IS in charge of
performing the corresponding actions on data, when it is
allowed by the policy controller. Sometimes, the policy
controller is called a Policy Decision Point (PDP) and the
executive manager is called a Policy Enforcement Point (PEP)
or a reference monitor.

In the remainder of this section, we give an overview of the
formal framework used in [11] to enforce access control,
usage control and obligations. This framework was based on
the Temporal Logic of Actions [10] and used to express both
contextual permissions and obligations.

Basically, a permission is associated with two conditions,
the start condition that must be true just when the access
request is evaluated, and the ongoing condition that must be
always satisfied while the access is in progress. The concept
of cancellation actions was introduced to allow users to cancel
access in progress.

An obligation is a mandatory access that must be performed
(e.g., by users or by the system). It is associated with two
conditions as well: the raise condition to trigger the
obligation, and the deadline condition to determine when the
obligation is violated. Furthermore, the concept of non
persistent obligation was introduced. An obligation is
persistent when the access is mandatory even if its raise
condition is no longer true once the obligation was raised and
before the deadline expires.

The specification of the framework begun with specifying
message types and message interactions between users and the
policy controller to the one hand, and message interaction
between policy controller and the executive manager on the
the other hand:

TYPE MessageType , accessRequest | accessEnd

| accessGrant
 | accessDeny | accessRevoke
 | cancellationRequest | cancellationDeny
 | cancellationGrant

| obligationNotification

| penalty | obligationCancel

“AccessRequest” messages represent the access requests

sent by users.
“AccessEnd” messages are sent by the executive manager

to the policy controller to notify the end of the action
corresponding to the access request.

“AccessGrant” messages are sent by policy controller (to
the executive manager) when the request is allowed to notify
that the relevant action can be executed.

Messages of type “accessDeny” are sent by the policy
controller to the user when access is not allowed.

Messages of type “accessRevoke” are sent by the policy
controller to notify the executive manager that access should
be aborted.

Messages of type “cancellationRequest” are sent by users
to cancel ongoing access before end or before a possible
revocation.

Message of type “cancellationDeny ” are sent by the policy
controller to users when their request to cancel an access is
denied.

Messages of type “cancellationGrant” are sent by the policy
controller to the executive manager to abort the current access.

Message of type “obligationNotification” are sent to users
by the policy controller when an obligation is triggered so as
the user can perform the access satisfying the obligation.

Messages of type “penalty” are sent by the policy controller
to the executive manger when the obligation deadline has
expired and the user did not perform the mandatory access at
the right time in order to satisfy the obligation.

Every message contains a description of the access. We call

Target a triplet composed of: (1) who wants to access, (2)
which object is requested and (3) which action is requested.

 The target is denoted α and defined as follows:

TYPE Target , [Subject × Action × Object]

Subject, Action and Object are nominal types.

A Message is then formally defined as a couple with a
message type and a target as follows:

TYPE Message , [MessageType × Target]

To model interactions between users and the executive

manager through the network by sending and receiving
messages, the network is considered as a finite set of
messages that is denoted Φ. Two predicates snd and rcv are
defined like this:

PREDICATE

rcv , [Message → Boolean]

 snd

, [Message → Boolean]

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2454

When a message is sent, Φ will contain the message in the
next state, and when the message is received, we are in
another state where that message is removed from Φ.

The axiomatic is defined as follows:

AXIOM Φ, Φ' = Φ � {h messageType, αi} ` snd (h messageType, αi)
Φ � {h messageType, αi}, Φ' = Φ `
rcv (h messageType, αi)

A. Policy Expression

In this subsection, we base our analysis on the formal
framework proposed in [11] to express the access control,
usage control and obligation policies and how to decide
whether a given request is authorised or not by the policy. We
first consider the following definitions:

− A system state is considered to be a finite set of
attributes.

− An attribute is a pair of a tag attribute and its
corresponding value.

− A condition is then a comparison between the
expected value of the attribute in the policy and the
actual value of the attribute given by the system state
when the request is evaluated. To compare two
attribute values, a finite set of binary operator is
considered.

−
− An atomic condition is a comparison between an

attribute and its expected value or a comparison
between two attributes. A condition can also be a
conjunction of atomic conditions.

− The environment, denoted Σ is defined as the finite
set of attributes describing the state of the system and
the finite set of binary operators.

More formally, Attributes, Operators and Conditions are
defined as follows:

TYPE Attribute , [Tag × Value]

 Operator , [Value × Value → Boolean]

 Condition , [Operator × Tag × Value]
| [Operator × Tag × Tag]
| [Condition � Condition]

The predicate isSatisfied checks if a given condition is

satisfied at the time of the request evaluation. For instance,
� α: Target, � c: Condition, Σ ` isSatsfied (α,c) means that,

according to the environment Σ , the condition c
corresponding to the access α is satisfied.

PREDICATE isSatisfied [Target × Condition → Boolean]

With atomic condition, the predicate isSatisfied is true if

the comparison operator is true for a given attribute tag(s)
matching existing attribute(s) in the system environment. In
the case where two tags are presented, the predicate is true if
the two tags correspond to existing tags in the system

environment Σ and the comparison between their two values is
true. With the conjunction of atomic conditions, the predicate
is true if each condition is satisfied.

The axiomatic is defined as follows:

AXIOMΣ �

{htag1 , value1i}`isSatisfied (α, h operator, tag1 , value2i)
↔ Σ `operator(value1, value2)

 Σ �

{htag1 , value1i, htag2 , value2i}` isSatisfied (α,hoperator, tag1,

tag2i)
↔ Σ `operator(value1, value2)

 Σ `

isSatisfied(α, c1 � c2)
↔ ` isSatisfied(α, c1) � Σ ` isSatisfied(α, c2)

The access control policy is considered as a finite set of

rules, denoted Γ. Each policy rule consists of five parameters:

− a label of type RuleType indicating whether the rule
is a permission or obligation,

− a target of type Target,

− tow conditions of type Condition, and finally

− a boolean of type Option.
The meaning of the parameters differs depending on

whether the rule is a permission or an obligation. Basically, in
case of a permission rule:

− the first condition must be verified at the time of the
request evaluation before access is granted.

− The second condition must be always true , until the
end of the action execution corresponding to access
request.

− The parameter of type Option is a boolean indicating
if an access in progress could be aborted or not.

Besides that, in an obligation rule:
− the first condition is that which triggers the

obligation,
− the second condition corresponds to deadline

accorded to the user to perform the access satisfying
obligation.

− The boolean of type option specifies whether the
obligation is persistent or not.

TYPE Option , Boolean

 RuleType , “permission” | “obligation”

 Rule , [RuleType × Target × Condition × Condition × Option]

 Policy , {Rule}

The predicate isPermited checks if there is a rule of type
“permission” in access control policy corresponding to the
given request. � α: Target, � sc, oc: Condition, Γ `

isPermitted (α, sc, oc) means that following the security policy
Γ, the access α may be granted if the condition sc is satisfied
and while oc is true.

Predicate isPermitted , [Target ×Condition ×Condition
→Boolean]

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2455

The isPermitted corresponding axiomatic is defined as
follows:

Axiom

Γ � {h“permission”, α, startCondition, ongoingCondition,

Optioni}` isPermitted(α, startCondition, ongoingCondition)

The predicate isCancelable is true if access could be

aborted according to the policy:

PREDICATE isCancelable , {[Target → Boolean]}

The corresponding axiomatic:

AXIOM Γ � {h“permission”, α, sc, oc, TRUEi} ` isCancelable(α)

Similarly, the predicate isObligated is true if there is a rule

of type “obligation” in access control policy which
corresponds to the given target and conditions :

PREDICATE isObligated , [Target ×Condition ×Condition

→Boolean]

The corresponding axiomatic is as follows:

AXIOM Γ �

{h“obligation”, α, raiseCondition, deadlineCondition, Option i}

 ` isObligated (α, raiseCondition, deadlineCondition)

An obligation is persistent if the corresponding option is

true. The predicate used to verify whether an obligation is
persistent or not is isPersistent; it defined by:

PREDICATE isPersistent , [Target → Boolean]

The corresponding axiomatic is as follows:

AXIOM Γ �

{h“obligation”, α, raiseCondition, deadlineCondition, True i}

 ` isPersistent(α)

B. Policy Interpretation

Based on the TLA formalism, different actions specifying
the behavior of the policy controller in charge of evaluating
access requests are defined. The access request evaluation
depends on the policy and the environment.

Basically, the TLA action “Request” is triggered when a
message of type “accessRequest” is received. The policy
controller first checks that there is a corresponding rule (in the
policy Γ) matching the message target and conditions using
the isPermitted predicate. If such a rule matches, the
corresponding “startCondition” condition is then evaluated
according to the environment Σ using the “isSatisfied”
predicate. If both of these predicates are true, the access is
granted and an “accessGrant” message is finally sent to the
executive manager.

Note that in order to enable the monitoring of authorized
access in progress and to ensure usage control, each ongoing

access α is saved with its condition “ongoingCondition” in a
“ongoingAccess” finite set. The ongoingAcess variable is
defined as follows:

VARIABLE

ongoingAccess

, {[Target × Condition]}

An obligation is triggered when the “raiseCondition”

condition is satisfied according to environment Σ . The policy
controller must check all the time if the “deadlineCondition”
condition corresponding to the ongoing obligation is satisfied.
In the case of not persistent obligation , the policy controller
must also check if the condition that triggered the obligation
is still satisfied. For this, the “ongoingObligation” variable is
introduced; it is a finite set containing obligations target and
their corresponding conditions: “deadlineCondition” and
“raiseCondition”.

The variable ongoingObligation is defined as follows:

VARIABLE

ongoingObligation , {[Target × Condition × Condition]}

When an obligation is triggered, the user could send the

access request to satisfy the ongoing obligation. In this case,
there is no need to check if the access is permitted because it
is mandatory. The access is thus allowed and the obligation is
removed from the set ongoingObligation.

The Request action is defined as follows:

Action Request ,
 � α : Target |
 Φ, Φ' ` rcv (h“requestAccess”, α i)
 � If � raiseCondition, deadlineCondition : Condition |
 hα, raiseCondition, deadlineConditioni � ongoingObligation

 Then hα,raiseCondition,ongoingObligationi ∉

ongoingObligation'
 � Φ, Φ' ` snd (h“grantAccess”, α i)
 Else If � startCondition, ongoingCondition : Condition |
 Γ ` isPermitted (α, startCondition, ongoingCondition)

 � Σ ` isSatisfied (α, startCondition)

 Then h α, ongoingCondition i � ongoingAccess'

 � Φ, Φ' snd (h“grantAccess”, αi)
 Else Φ, Φ' ` snd(h“denyAccess”, α I)

The policy controller must ensure that all ongoingCondition

conditions associated with the current access are satisfied.
When one of them is no longer satisfied, access is revoked
and a “accessRevoke” message is sent to the executive
manager; Subsequently, the corresponding access is removed
from the ongoingAccess set.

The action CheckOngoingAccess is thus introduced and is
defined as follows:

Action

CheckOngoingAccess ,

 � α : Target |

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2456

 � ongoingCondition : Condition |

 hα, ongoingConditioni � ongoingAccess

 � If Σ ¬ isSatisfied (α, ongoingCondition)

 Then hα, ongoingConditioni ∉ ongoingAccess'

 � Φ, Φ' ` snd(h“accessRevoke”, α I)

When a cancellation request is received, the policy

controller obviously checks if the current access is cancellable
according to the security policy; if it is the case, the policy
controller removes the ongoing access from the
ongoingAccess set.

The action Cancel is thus defined as follows:

Action Cancel ,
 � α : Target |

 Φ, Φ' ` rcv (h“cancellationRequest”, α i)
 � If � ongoingCondition : Condition |

 hα, ongoingConditioni � ongoingAccess

 � Γ ` isCancelable (α)

 Then Φ, Φ' ` snd(h“cancellationGrant”, α i)
 � hα, ongoingConditioni ∉ ongoingAccess'

 Else Φ, Φ' ` snd(h“cancellationDeny”, α i)

Note that the raiseObligation action, defined below, allows

the policy controller to check if there are obligations that have
been triggered, i.e., when their associated raiseCondition
conditions are satisfied according to the system environment
Σ. If an obligation is triggered, the policy controller sends the
“obligationNotification” notification message to the user to
perform the appropriate access requirement, and the
corresponding target and raiseCondition and
deadlineCondition conditions are registered in the
ongoingObligation set.

Action RaiseObligation ,
 � α : Target,
 � raiseCondition, deadlineCondition : Condition |
 Γ ` isObligated (α, raiseCondition, deadlineCondition)

 � Σ ` isSatisfied (α, raiseCondition)

 � hα, raiseCondition, deadlineConditioni ∉ ongoingObligation

 � hα, raiseCondition, deadlineCondition i � ongoingObligation'

 � Φ, Φ' ` snd (h“notifyObligation”, α i)

It is worth noting that the policy controller must repeatedly

check if each deadlineCondition condition associated with a
persistent ongoing obligation is satisfied; when one of them is
satisfied, the “penalty” message is sent to the executive

manager and the corresponding obligation is removed from
the ongoingObligation set. In the case of non persistent
obligation, the policy controller must check if raiseConditioni
condition is still satisfied; if not, a “cancelObligation”
message is sent and this obligation is removed from the
ongoingObligation set. The CheckOngoingObligation action
is thus introduced and is defined as follows:

Action

CheckOngoingObligation ,

 � α : Target,
 � raiseCondition, deadlineCondition : Condition |
 hα, raiseCondition, deadlineCondition i �

OngoingObligation
 � If Σ ` ¬ isSatisfied (α, raiseCondition)

 � Σ ` ¬ isPersistant(α, raiseCondition)

 Then hα, raiseCondition,deadlineConditioni

∉ongoingObligation'
 � Φ, Φ' ` snd (h“CancelObligation”, α i)
 Else If Σ ` isSatisfied (α, deadlineCondition)

 Then hα, raiseCondition,deadlineConditioni

∉ongoingObligation'
 � Φ, Φ' ` snd (h“penalty”, α i)

When the executive manager completes an action

corresponding to an access request, an “accessEnd ” message
is sent to the policy controller; consequently, the
corresponding target and ongoingCondition condition must be
removed from the ongoingAccess set. The End action is
defined as follows:

Action End ,
 � α: Target |
 Φ, Φ' ` rcv (h“accessEnd”, α i)
 � If � ongoingCondition: Condition |

 hα, ongoingCondition i � OngoingAccess

 Then hα,ongoingCondition i ∉⟦ongoingAccess'

Finally the Init action and the policy controller behavior are

defined as follows :

Action Init ,
 ongoingAccess = �
 � ongoingObligation = �

specification PolicyController ,
 Init
 � ¤ [Request � End � CheckOngoingAccess � Cancel
 � RaiseObligation
 � CheckOngoingObligation]<ongoingAccess,ongoingObligation>

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2457

IV. RECOMMENDATIONS

The framework proposed in the previous section can be
used to specify security requirements of many applications
such as Digital Right Management, P2P or Web Service
applications. However it is not rich enough to cover security
requirements in form of recommendations while this access
modality is constantly present in several security policies (as
explained in the introduction). In fact, we often find guidance
in the form of recommendations as in the Recommendations
on collective cross-border management of copyright and
related rights for legitimate online music services published
by the Commission of the European Communities [13]. This
document specifies several recommendations like:

− “Collective rights managers should give reasonable
notice to each other and commercial users of
changes in the repertoire they represent”.

− “Upon payment of the royalties, collective rights
managers should specify all the right-holders they
represent, the deductions made for purposes other
than for the management services provided".

We can cite many other example, but due to space

limitation we can clearly state that recommendations are
present in many current and emergent applications.
Consequently, we propose extending the proposed framework
to express recommendations rules in access control policy:
moreover, we extend the specification of the controller in
charge of evaluating such policy.

Basically, we consider recommendations as modalities that
could advise the subjects (e.g., users) to do certain actions.
When a recommendation is triggered, the policy controller
notifies the user to perform the access in order to satisfy the
recommendation. Note that by contrast to obligations, if the
user does not perform the access, no penalty is applied on
him. Moreover, after a given deadline, if the user does not
perform the access satisfying the recommendation, the policy
controller generally sends a reminder of the recommendation
to the user.

To illustrate theses notions, let us consider another
example: assume that for authentication to access the IS,
certificates are used with the RSA algorithm. The access
control policy may specify some recommendations on the size
of RSA modules and size of RSA public exponents. Actually,
the general security document [2] issued by the National
Agency for the security of information systems in France
already introduce this kind of recommendations by stipulating
that: “It is recommended for any application, to use public
exponents strictly greater than 216 = 65536”. We can thus
perfectly imagine that if the user's certificate contains an RSA
key with exponent is less than 216 (condition that triggers the
recommendation), a notification is sent to the user to change
its key. The notification is re-sent if the user does not change
its key on a fixed time interval.

We thus extend the former formal framework by adding a
new message interaction called:
“recommendationNotification”.

TYPE MessageType , “accessRequest” | “accessEnd”
| “accessGrant”

 | “accessDeny” | “accessRevoke”
 | “cancellationRequest”

| “cancellationDeny”
 | “cancellationGrant”

| “obligationNotification”
 | “penalty | obligationCancel”

| “recommendationNotification”

A. Specification of the security policy

We believe that a recommendation rule is associated with
two conditions. The first one is called “raiseCondition”. The
recommendation is triggered when this condition is satisfied.
The second condition is called “deadlineCondition”. When the
recommendation is triggered, if the subject (e.g., user) does
not perform the action satisfying the recommendation and if
the condition “deadlineCondition” is satisfied, a reminder of
the recommendation is sent to the user. The type of our
security policy rules is redefined as follows:

TYPE Permission , “permission”

 Obligation

, “obligation”

 Recommendation

, “recommendation”

TYPE Rule , [Permission × Target × Condition × Condition × option] |
 [Obligation × Target × Condition × Condition × option] |
 [Recommendation × Target × Condition × Condition]

The predicate isRecommended and the corresponding

axiomatic are defined as follows:

PREDICATE isRecommended , [Target × Condition → Boolean]

AXIOM Γ �

{h“recommendation ”, α, raiseCondition i}

 ` isRecommended (α, raiseCondition, deadlineCondition)

B. Policy Interpretation

A recommendation is triggered when the condition
“raiseCondition” is satisfied for a given target. The policy
controller must check if the condition “deadlineCondition”
associated with the current recommendation is satisfied. We
consequently introduce the “ongoingRecommendation”
variable, a finite set containing the target of the current
recommendation with the corresponding “deadlineCondition”
condition. Hence, the ongoingRecommendation is a finite set
of ongoing recommendations with their associated recall
conditions waiting to be satisfied.

VARIABLE ongoingRecommendation

, {[Target × Condition]}

The action that triggers the recommendation is defined

below:

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2458

ACTION RaiseRecommendation ,
� α: Target,
� raiseCondition, deadlineCondition: Condition
Γ ` isRecommanded (α, raiseCondition, deadlineCondition)

� hα, deadlineConditioni ∉ ongoingRecommendation

� hα, deadlineConditioni � ongoingRecommendation'

� Φ, Φ' ` snd (h“recommendationNotification”, α i)

The checkOngoingRecommendation action checks if for an

ongoing recommendation, the deadlineCondition condition is
satisfied; if it is the case, the recommendation is removed
from the ongoingRecommendation set. If for the target α, the
condition which triggered the recommendation is always true,
the raiseRecommandation action will send a reminder to the
user to perform the query that satisfy the recommendation.

ACTION CheckOngoingRecommendation ,

� α: Target,

� deadlineCondition: Condition |

hα, deadlineConditioni � ongoingRecommendation

� if Σ ` isSatisfied (hα, deadlineConditioni)
 Then hα, deadlineConditioni ∉ ongoingRecommendation'

The action Request is redefined as follows:

ACTION Request ,
 � α : Target |
 Φ, Φ' ` rcv (h“accessRequest”, α i)
 � If � raiseCondition, deadlineCondition : Condition |
 hα, raiseCondition, deadlineConditioni �

ongoingObligation
 Then hα,raiseCondition, deadlineConditioni ∉

 ongoingObligation'
 � Φ, Φ' ` snd (h“accessGrant”, α i)
 Else If � deadlineCondition: Condition |

 hα, deadlineConditioni � ongoingRecommendation

 Then hα, deadlineConditioni∉ ongoingRecommendation'

 � Φ, Φ' ` snd (h“accessGrant”, α i)
 Else If � startCondition, ongoingCondition: Condition |

 Γ ` isPermitted (α, startCondition, ongoingCondition)

 � Σ ` isSatisfied (α, startCondition)

 Then h α, ongoingCondition i � ongoingAccess'

 � Φ, Φ' snd (h“accessGrant”, αi)
 Else Φ, Φ' ` snd(h“accessDeny”, α I)

Finally, the Init action as well as the behavior of the policy

controller are re-defined as follows:

Action Init ,
 ongoingAccess = �
 � ongoingObligation = �

� ongoingRecommandation = �

specification PolicyController ,
 Init
 � ¤ [Request � End � CheckOngoingAccess � Cancel
 � RaiseRecommandation

� CheckOngoingRecommendation
� CheckOngoingObligation

 �
RaiseObligation]<ongoingAccess,ongoingObligation,ongoingRecommendation>

V. FROM RECOMMENDATION TO OBLIGATION

In numerous contexts, some recommendation rules are

mandatory rules. These recommendations could not be
obligations upon the completion of the document, because
their applications could not be practical for the user, or
expensive at the time (even if their application could be
strongly recommended). Several concrete and real example
may confirm this vision and this form of recommendations.
For instance, the Policy Certification Type document
“Authentication Server” issued by the National Security
Information Systems[14] stipulates that: “Requirements,
common to all levels and specific to a given level, specified in
this certification policy type must be fully respected by the
providers of electronic certificates except for the following:
in this certification policy type, a number of recommendations
are formulated. Providers of electronic certificates are
encouraged to also respect them now because these
recommendations which are not mandatory in this version of
this document will become it later”. In this example, a
recommendation clearly becomes a requirement when a
transition condition is satisfied.

For example: let us take the following three rules of the
RSA module:

Rule-1:The minimum size of the module must be 2048 bits,
for use not to exceed the year 2020.

Rule-2: For use beyond 2020, the minimum size of the
module must be 4096 bits

Rule-3: It is recommended to use a 4096-bit key
In other words, if the user RSA key has with a module

length less than 2048 bits (condition that triggers the
obligation), the user is forced to change its key, assuming in a
one month deadline. If by contrast the RSA key module is
2048 bit (condition that triggers the recommendation), the
user is notified to change the key; and this notification is
resent every month until he satisfies the recommendation. In
2020 (the condition transforming recommendation to
obligation), the recall recommendation is stopped and if the
user has not yet performed the access satisfying the
recommendation, he will be penalised, as recommendation is
becoming an obligation in this case. The second rule could
then be deleted and the third rule could be a recommendation
which becomes an obligation in 2020.

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2459

A. Specification of the security policy

In order to specify a recommendation that becomes an
obligation, we suggest using the “transitCondition” condition.
We assume that the time to recall a recommendation is the
same as the one allowed to perform an obligation.

The policy rules thus are re-defined as follows:

TYPE Permission , “permission”

 Obligation

, “obligation”

 Recommendation

, “recommendation”

TYPE Rule , [Permission × Target × Condition × Condition × option] |
 [Obligation × Target × Condition × Condition × option] |
 [Recommendation × Target × Condition × Condition ×
 Condition × option]

The isRecommanded predicate is also re-defined as follows:

PREDICATE isRecommended , [Target ×Condition × Condition ×
 Condition → Boolean]

Consequently, the corresponding axiomatic is re-defined as

follows:

AXIOM Γ �

{h“recommendation ”, α, raiseCondition, deadlineCondition,

transitCondition, optioni}

 ` isRecommended (α, raiseCondition, deadlineCondition

 transitCondition, option)

The isPersistent axiomatic is also re-defined as follows:

AXIOM Γ � {h“obligation”, α, raiseCondition, deadlineCondition, Truei}

 � {h“recommendation”, α, raiseCondition, deadlineCondition,

 TransitCondition, Truei}

 ` isPersistent(α)

B. Policy Interpretation

With the notion of recommendation that becomes
obligation, a recommendation is triggered if the
“raiseCondition” condition is satisfied and the
“transitCondition” condition is not satisfied. The
raiseRecommandation action is subsequently redefined as
follows:

ACTION RaiseRecommendation ,
 � α : Target,
 � raiseCondition, recallCondition, transitCondition: Condition
 Γ ` isRecommanded (α, raiseCondition, recallCondition,

 transitCondition)
 � Σ ` isSatisfied (α, raiseCondition)

 � Σ ` ¬ isSatisfied (α, transitCondition)

 � hα, deadlineConditioni ∉ ongoingRecommendation

 � hα, deadlineConditioni � ongoingRecommendation'

 � Φ, Φ' ` snd (h“recommendationNotification”, α i)

Note that the RecommendationToObligation action is used

to checks: if for a recommendation rule, the transitCondition
condition is satisfied; if yes, the target and the corresponding
raiseCondition and deadlineCondition conditions are then
recorded in ongoingObligation set:

ACTION RecommendationToObligation ,
 � α : Target,

 � raiseCondition, deadlineCondition, transitCondition:Condition|
 Γ ` isRecommanded (α, raiseCondition, deadlineCondition,

 transitCondition)
 � Σ ` isSatisfied (α, raiseCondition � transitCondition)

 � if hα, deadlineConditioni � ongoingRecommendation

 Then hα,deadlineConditioni∉ongoingRecommendation'

 � hα, raiseCondition � transitCondition,

 deadlineConditioni ∉ ongoingObligation

 � hα, raiseCondition �transitCondition, deadlineCondition i �
 ongoingObligation'

 � Φ, Φ' ` snd (h“obligationNotification”, α i)

The behavior of policy controller is consequently redefined

as follows:

Action Init ,
 ongoingAccess = �
 � ongoingObligation = �

� ongoingRecommandation = �

specification PolicyController ,
 Init
 � ¤ [Request � End � CheckOngoingAccess � Cancel
 � RaiseRecommendation

� RecommendationToObligation
� CheckOngoingRecommendation
� CheckOngoingObligation

 �
RaiseObligation]<ongoingAccess,ongoingObligation,ongoingRecommendation>

VI. POLICY UPDATE

As a security policy is usually dynamic (not static), the

policy controller behavior should consider and handle the
frequent updates of the security policy. In this section, we
extend our formal framework mechanism to handle the policy
updates, so that the access control policy can be updated not
only when ongoing obligations are checked, but also when
ongoing recommendation are checked. As in [11], we
consider every update of the security policy as regular access
request; for example “admin”, “update”, “The policy”
authorized by the policy controller according to the security

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2460

policy. The update is effective when this access is complete,
i.e., when “accessEnd”, “admin”, “update”, “The policy” is
received by the policy controller. Note that the CheckUpdate
action (defined bellow) is responsible for checking if there is
an update of the security policy; if yes, the
UdpdateOngoingAccess, UpdateOngoingObligation and
UpdateOngoingRecommendation actions are then updating
the ongoing access, ongoing obligations and ongoing
recommendations sets respectively.

ACTION CheckUpdate ,
 � admin: Subject, � α: Target |
 α = hadmin, “update ”, “ThePolicy”i
 � Φ, Φ' ` rcv(h“endAccess”, α i)
 � UpdateOngoingAccess
 � UpdateOngoingObligation
 � UpdateOngoingRecommendation

Actually, the UpdateOngoingAccess action allows the

update of OngoingAccess set containing the target and the
corresponding condition of the access in progress. For each
target and the corresponding condition in the OngoingAccess
set, the action checks if there is a corresponding permission
rule in the new policy:

− if the rule exists and the condition recorded in
OngoingAccess set is different from the condition in
the new security policy, the condition recorded in
OngoingAccess set is replaced by the new condition
in the new security policy.

− If there is no rule in the new security policy
corresponding to the target and related condition, i.e.,
the ongoing access is no longer allowed in the new
security policy, the ongoing access is revoked.

Note that the previously defined CheckOngoingAccess
action checks if new conditions in ongoingAccess are
satisfied.

ACTION UpdateOngoingAccess ,
 � α: Target,
 � ongoingCondition 1 : Condition |
 hα, ongoingCondition 1 i � ongoingAccess

 �

If � startCondition 2 , ongoingCondition 2 : Condition |

 Γ ` isPermitted(α, startCondition 2 , ongoingCondition

2)
 � ongoingCondition 1 ≠ ongoingCondition 2

 Then hα, ongoingCondition 1i ∉ ongoingAccess'

 � hα, ongoingCondition 2 i � ongoingAccess'

 Else hα, ongoingCondition 1 i ∉ ongoingAccess'

 � Φ, Φ' snd(“revokeAccess”, α)

Besides that, for the update of the ongoing obligations, the

UpdateOngoingObligation action goes through all the target,
and related conditions. If obligation rules corresponding to the
target still exist in the new security policy, the action updates
conditions in ongoingObligation set by conditions in the new

security policy if they are different. If there is no
corresponding obligation rule in the new security policy, we
check if there is a corresponding recommendation rule. If that
is the case, it is naturally a recommendation that becomes an
obligation; consequently, the action updates the condition that
triggered the obligation (conjunction of the condition which
triggers the recommendation and the condition that transforms
the recommendation to an obligation) by the new value
(conjunction of the new condition which triggers the
recommendation and the new condition that transforms the
recommendation to an obligation in the new security policy)
and the recall condition by the new one in the new security
policy if it is different. If there is no corresponding
recommendation rule, then the obligation is aborted.

Note that new conditions are checked by the
CheckOngoingObligation action in the case of obligations as
well as in the case of recommendations turned into
obligations.

ACTION UpdateOngoingObligation ,
 � α: Target,
 � deadlineCondition 1 : Condition |
 h α, raiseCondition 1 , deadlineCondition 1 i � ongoingObligation

 � If � raiseCondition 2 , deadlineCondition 2 : Condition |
 Γ ` isObligated(α, raiseCondition 2 ,

 deadlineCondition 2)
 � (raiseCondition 1 ≠ raiseCondition 2

 � deadlineCondition 1 ≠ deadlineCondition 2)

 Then h α, raiseCondition 1 , deadlineCondition 1 i ∉

 ongoingObligation'
 � h α, raiseCondition 2 , deadlineCondition 2 i �

 ongoingObligation'
 Else If � raiseCondition 2 , deadlineCondition 2 ,
 transitCondition: Condition |
 Γ ` isRecommended(α, raiseCondition 2 ,

 deadlineCondition 2 ,
transitCondition)

 � (raiseCondition 1 ≠ (raiseCondition 2 �
 transitCondition)
 � deadlineCondition 1 ≠ deadlineCondition 2)
 Then h α, raiseCondition 1 , deadlineCondition 1i ∉

 ongoingObligation'
 � h α, raiseCondition 2 � transitCondition,

 deadlineCondition 2 i � ongoingObligation

 Else h α, raiseCondition 1 , deadlineCondition 1i ∉

 ongoingObligation'
 � Φ, Φ' ` snd(h “cancelObligation”, α i)

The update of the recommendations is done by the

UpdateOngoingRecommendation action that goes through all
elements of the ongoingRecommendation set. If there is a
recommendation rule in the new access control policy
corresponding to the current recommendation, then we update
the deadline condition corresponding to the ongoing
recommendation by the new deadline condition recorded in

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2461

the new policy if they are different. If no corresponding
recommendation rule in the new security policy, the
recommendation is aborted.

ACTION UpdateOngoingRecommendation ,
 � α: Target,
 � recallCondition 1 : Condition |
 h α, recallCondition 1 i � ongoingRecommendation

 �

If � raiseCondition 2 , recallCondition, transitCondition:

 Condition |
 Γ ` isRecommended (α, raiseCondition 2 ,

 recallCondition, transitCondition)
 � recallCondition 1 ≠ recallCondition 2)
 Then h α, recallCondition 1 i ∉ ongoingRecommendation'

 � h α, recallCondition 2 i � ongoingRecommendation'

 Else h α, recallCondition 1 i ∉ ongoingRecommendation'

The final behavior of the controller of the policy is given as

fllows:

Action Init ,
 ongoingAccess = �
 � ongoingObligation = �

� ongoingRecommandation = �

SPECIFICATION PolicyController ,
 Init
 � ¤ [Request � End � CheckOngoingAccess � Cancel
 � RaiseRecommandation

� RecommendationToObligation
� CheckOngoingRecommendation
� CheckOngoingObligation
� CheckUpdate

 �RaiseObligation]<ongoingAccess,ongoingObligation,ongoingRecommenda

tion>

VII. RELATED WORK

In the literature, most of traditional security models are

unfortunately static. They in fact respond to user requests just
by yes or no. Recently, some interesting works on access
control framework that model obligations was proposed [15]
[16] [17] [18]. The formalization of the obligation is different
from one model to another. In XACML for example,
obligations are all operations that must be filled in conjunction
with the application of the authorization decision. In [15] and
[19], there is a difference between provisions and obligations:
provisions are actions or conditions that must be satisfied
before an access decision is made, while obligations are
actions that must be satisfied by the users or the system after
the access decision is made. The specification language of
obligations in [18] distinguishes between usages formulas and
obligations formulas: usage formulas concern operations on
the data that must be protected, while obligations formulas are
conditions on the use of data. An obligation formulas become

an obligation once the data received by the user and the later
agrees to the conditions. Besides that, while in UCON ABC
[20], obligations rules must be satisfied before granting
access. In [21], obligations are actions that regular users of the
IS must perform . In [11], a permission is associated with two
conditions, the first must be true at the time of the request
evaluation, and the second must always be true as long as
access is in progress. It also introduce a concept to give the
user the right to abandon an access in progress. Moreover, the
obligation in [11] is associated with two conditions: the first
one triggers the obligation. The second condition determines
when the obligation should be considered as violated. If the
user did not perform the access satisfying the obligation
before this condition becomes true, a penalty is applied on the
user.

However, none of these models expresses
recommendations. Up to our knowledge, the only works
introducing recommendations are proposed in [22] and [23],
In [22], we based our work on the deontic logic and we
suggested a logical framework for modeling
recommendations. In this model, a rule is a requirement in the
current state of the system if all states connected directly to it
satisfy the rule. A rule is permitted if at least one state directly
connected to the current state satisfies the rule. A rule is a
recommendation if a majority of states connected to the
current state satisfy the rule. Besides that, in [23], we
introduce the notion of probability of occurrence to model
recommendations. Basically, a rule is recommended if the
possibility of occurrence of this rule in the possible executions
of the system is greater than 0.5; not recommended if its
probability of occurrence is less than 0.5; mandatory if its
probability of occurrence is 1 and finally prohibited if its
probability of occurrence is zero.

In this paper, our model is able to express
recommendations that become obligations. In addition, we
provide a framework to implement recommendations by
specifying the behavior of the policy controller in charge of
evaluating access request according to the access security
policy. A recommendation in our model is associated with
three conditions:

− the first is the one that triggers the recommendation.
When this condition is true, a notification is sent to
the user to perform the access in order to satisfy the
recommendation.

− The second condition is the recall deadline that
determines when the next notification will be sent if
the user has not performed the access, and finally

− The third condition is the one that determines when a
recommendation could become a requirement.

VIII. CONCLUSION

In many emerging applications, several regulations are in

the form of recommendations and guidelines. Of course, these
guidelines should be reflected in the security policy, both in
the specification and in the implementation phase. Modeling

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2462

of the recommendations is thus a new challenge in the security
policy and models.

In this paper, we establish a formal framework to
implement recommendations in general and, in particular,
recommendations that become obligations over time. We
base our work and greatly extend the specification defined in
[11] to express recommendations in access control policy.
Using TLA, we extend the specification of the policy
controller in charge of evaluating such a policy. This could be
used to specify the security policy that is based on
requirements information systems for a qualification or
certification policy documents. In these documents, there are
rules of obligations that must be met in full and a number of
recommendations, they suggest, to be respected, indicating
that it will become mandatory in subsequent version of this
documents.

REFERENCES
[1] Référentiel général de sécurité version 1.0, 6 mai 2010.
[2] Référentiel général de sécurité version 1.0, annex b1, mécanismes

cryptographiques, règles et recommandations concernant le choix et le
dimensionnement des mécanismes cryptographiques, version 1.20,
Janvier 2010.

[3] Resolution a/res/45/ general assembly of united nations, guidelines for
the regulation of computerized personal data files, December 1990.

[4] Recommendation of the communication of health information in
hospitals, european health committee cdsp (92)8, council of europe,
strasbourg, June 1992.

[5] Recommendations of the council of europe, r(97)5, on the protection of
medical data banks, council of europe, strasbourg, February 1997.

[6] Directive 95/46/ec of the european parliament and of the council of 24
october 1995, on the protection of individuals with regard to the
processing of personal data, October 1995.

[7] European council, bangemann report recommendations to the ec, May
1994.

[8] International risk governance council, critical infrastructures at risk:
Securing the european electric power system, 2007.

[9] North american electric reliability council, urgent action standard 1200,
2003.
[10] Leslie Lamport. The temporal logic of actions. In ACM Transactions

on Programming Languages and Systems, 16(3):872-923, May 1994.
[11] T. Sans, F Cuppens, and N. Cuppens-Boulahia. A framework to

enforce access control, usage control and obligations. Annals of
telecommunications : Security in The Digital World, November-
December 2007.

[12] Denis Roegel. Etude de la sémantique de programmes parallèles réels
en TLA. PhD thesis, Université Henri Poincaré – Nancy 1, 7 novembre
1996.

[13] Commission recommendation on collective cross-border management
of copyright and related rights for legitimate online music services, 18
May 2005.

[14] Référentiel général de sécurité version 1.0, annexe a9, politique de
certification type, authentification serveur version 2.3, 11 février 2010.

[15] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Obligation
monitoring in policy management. In International Workshop, Policies
for Distributed Systems and Networks (Policy 2002), Montery,
California, USA, June 2002.

[16] N. Demeanor, N. Delay, E. Lupus, and M. Sloan. The ponder policy
specification language. In International Workshop Policy, Bristol, UK,
2001.

[17] Q. Ni, E. Bertino, and J. Lobo. An obligation model bridging access
control policies and privacy policies. In 13th ACM SACMAT, Estes
Park, CO, USA, June 2008.

[18] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy
language for distributed usage control. In 12th European Symposium

On Research In Computer Security (ESORICS), Dresden, Germany,
September 2007.

[19] Manuel Hilty, David Basin, and Er Pretschner. On obligations. In
In: Proc. ESORICS. (2005) 98–117, pages 98–117, 2005.
[20] J. Park and R. Sandhu. The uconabc usage control model. In ACM

Transactions on Information and System Security, 7(1), February 2004.
[21] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A security

model with non atomic actions and deadlines. In In 18th IEEE
Computer Security Foundations Workshop (CSFW), Aix en Provence,
France, June 2005

[22] A. Abou El Kalam and P.Balbiani. A policy language for modelling
recommendations. IFIP Advances in Information and Communication
Technology, 297(ISBN 978-3-642-01243-3):176, 2009.

[23] A. Abou El Kalam. A research challenge in modeling access control
policies: Modeling recommendations. In RCIS, pages 263–270, 2008.

Nada Essaouini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2452-2463

2463

